Radiation Safety. Amplified.

Broad Energy Germanium Detectors (BEGe)

FEATURES & BENEFITS
- Energy range from 3 keV to 3 MeV combines the spectral advantages of Low Energy and Coaxial HPGe detectors
- Detection efficiencies and energy resolutions are optimized in the 3 keV to 662 keV energy region where most tightly-grouped gamma lines of interest are located
- Flat, non-bulletized crystals offer optimum efficiencies for samples counted close to the detector
- Thin, stable entrance window allows the detector to be stored warm with no fear of low energy efficiency loss over time
- Equipped with Intelligent Preamplifier
- USB 2.0 Serial Interface

DESCRIPTION

The CANBERRA Broad Energy Ge (BEGe) Detector covers the energy range of 3 keV to 3 MeV like no other. The resolution at low energies is equivalent to that of our Low Energy Ge (LEGe) Detector and the resolution at high energy is comparable to that of good quality coaxial (SEGe) detectors.

Most importantly the BEGe has a short, fat shape which greatly enhances the efficiency below 1 MeV for typical sample geometries. This shape is chosen for optimum efficiency for real samples in the energy range that is most important for routine gamma analysis. This is in stark contrast to the traditional relative efficiency measurement – a 60Co point source at 25 cm which is hardly a relevant test condition for real samples. See the figures below comparing absolute detector efficiencies of a 5000 mm2 and 6500 mm2 BEGe Detector to coaxial detectors with approximately 60% relative efficiency.

In addition to higher efficiency for typical samples, the BEGe exhibits lower background than typical coaxial detectors because it is more transparent to high energy cosmogenic background radiation that permeates above ground laboratories and to high energy gammas from naturally occurring radioisotopes such as 40K and 208Tl (thorium). This aspect of thin detector performance has long been recognized in applications such as actinide lung burden analysis.

Most Low Energy Detectors are aptly named because they do not give good resolution at higher energies. In fact resolution is not usually specified above 122 keV. The BEGe represents a breakthrough in this respect. The BEGe is designed with an electrode structure that enhances low energy resolution and is fabricated from select germanium having an impurity profile that improves charge collection (thus resolution and peak shape) at high energies. Indeed, this ensures good resolution and peak shape over the entire mid-range which is particularly important in analysis of the complex spectra from uranium and plutonium.

www.canberra.com
In addition to routine sample counting, there are many applications in which the BEGe Detector really excels. In internal dosimetry, the BEGe gives the high resolution and low background needed for actinide lung burden analysis and the efficiency and resolution at high energy for whole-body counting. The same is true of certain waste assay systems, particularly those involving special nuclear materials.

The BEGe detector and associated preamplifier are normally optimized for energy rates of less than 60,000 MeV/sec. Charge collection times prohibit the use of short amplifier shaping time constants. Resolution is specified with an optimum shaping time constant and Lynx® digital peaking time equivalent.

The Intelligent Preamplifier (iPA) included with this style of HPGe detector has an improved, low power analog front stage providing excellent resolution and count rate performance.

An integrated digital back-end makes use of the detector sensors to continuously monitor and store all relevant parameters and status information. This data, which may be trended over time, allows the user to take preventative measures if a key parameter starts to shift and ultimately improves equipment availability and productivity.

It also enables setup and tuning of the preamplifier through digital controls rather than potentiometers.

The preamplifier status information, on-board log file, and digital controls are accessible through a USB 2.0 serial connection and software application which is provided with the iPA.

See the “Intelligent Preamplifier” specification sheet for more details.

Absolute Efficiency vs. Energy comparison for BE6530, BE5030, GC6020 (p-type coaxial) and GR6022 (n-type coaxial) detectors

Another big advantage of the BEGe is that the detector dimensions are virtually the same on a model by model basis. This means that like units can be substituted in an application without complete recalibration and that computer modeling can be done once for each detector size and used for all detectors of that model.

With cross-sectional areas of 20 to 65 cm² and thickness of 20 to 30 mm, the nominal relative efficiency is given below along with the specifications for the entire range of models. BEGe detectors are normally equipped with our composite carbon windows which are robust and provide excellent transmission to below 10 keV. Beryllium or aluminum windows are also available. Aluminum is preferred when there is no interest in energies below 30 keV and improved ruggedness is desired. Beryllium should be selected to take full advantage of the low energy capability (down to 3 keV) of the BEGe detector.
SPECIFICATIONS

BEGe DETECTOR

General Specifications and Information

Standard configuration includes:
- Vertical Slimline dipstick cryostat with 0.6 mm Carbon Composite window and 30 liter Dewar.
- Model iPA – Intelligent Preamplifier with 3 meter bias, high voltage inhibit, signal and power cables.

Other cryostat options consult web site.

Relative efficiency is a *typical value*, not a spec limit.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Area (cm²)</th>
<th>Thickness (mm)</th>
<th>Typical Rel. Eff. (%)</th>
<th>Full Width Half Max (FWHM) Resolution (keV)</th>
<th>Endcap diameter mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At 5.9 keV energy</td>
<td>At 122 keV energy</td>
</tr>
<tr>
<td>BE2020</td>
<td>20</td>
<td>20</td>
<td>9</td>
<td>0.35</td>
<td>0.65</td>
</tr>
<tr>
<td>BE2820</td>
<td>28</td>
<td>20</td>
<td>13</td>
<td>0.40</td>
<td>0.70</td>
</tr>
<tr>
<td>BE2825</td>
<td>28</td>
<td>25</td>
<td>18</td>
<td>0.40</td>
<td>0.70</td>
</tr>
<tr>
<td>BE2825P</td>
<td>28</td>
<td>25</td>
<td>18</td>
<td>0.40</td>
<td>0.68</td>
</tr>
<tr>
<td>BE3820</td>
<td>38</td>
<td>20</td>
<td>20</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>BE3825</td>
<td>38</td>
<td>25</td>
<td>26</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>BE3825P</td>
<td>38</td>
<td>25</td>
<td>26</td>
<td>0.45</td>
<td>0.72</td>
</tr>
<tr>
<td>BE3830</td>
<td>38</td>
<td>30</td>
<td>34</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>BE3830P</td>
<td>38</td>
<td>30</td>
<td>34</td>
<td>0.45</td>
<td>0.72</td>
</tr>
<tr>
<td>BE5020</td>
<td>50</td>
<td>20</td>
<td>28</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>BE5025</td>
<td>50</td>
<td>25</td>
<td>37</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>BE5030</td>
<td>50</td>
<td>30</td>
<td>48</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>BE5030P</td>
<td>50</td>
<td>30</td>
<td>48</td>
<td>0.48</td>
<td>0.72</td>
</tr>
<tr>
<td>BE6530</td>
<td>65</td>
<td>30</td>
<td>60</td>
<td>0.50</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Above specifications are in accordance with IEEE Std 325-1996.

Resolution performance is tested with Lynx digital MCA. For resolution performance guarantee using other CANBERRA digital MCAs consult factory.

Lynx is a trademark and/or registered trademark of Mirion Technologies, Inc. and/or its affiliates in the United States and/or other countries.

©2016 Mirion Technologies (Canberra), Inc. All rights reserved.

Copyright ©2016 Mirion Technologies, Inc. or its affiliates. Mirion, the Mirion logo, and other trade names of Mirion products listed herein are registered trademarks or trademarks of Mirion Technologies, Inc. or its affiliates in the United States and other countries. Third party trademarks mentioned are the property of their respective owners.

www.canberra.com

C49318 - 11/2016