Multiport II
Multichannel Analyzer

Description
The Multiport II is a double width NIM intended for use where existing amplifier and HVPS modules are to be combined with a high analog performance, low-cost ADC/MCA. It provides greater flexibility than traditional bus plug-in boards but at a comparable cost. Multiport II can be purchased in versions from one to six inputs. Units with fewer than six inputs can be field upgraded with additional inputs. Two communications interface versions are available: Ethernet/USB and USB only.

The Multiport II is easy to install and easy to link. Host computer interfacing is accomplished via a standard USB port or a standard Ethernet port (unshielded twisted pair) and through standard protocols. These widely recognized interfaces make the Multiport II compatible with a wide range of computer platforms, so the Multiport II user need not worry about compatibility as computer bus standards evolve. Also, multiple Multiport II units can be totally remote-controlled from a single computer. The Multiport II provides better performance and lower noise than plug-in PC board based MCAs by keeping all sensitive components out of the computer itself and by putting the MCA close to the radiation detectors. Furthermore, there is only one cable between the host computer and the Multiport II NIM module for simplicity of interconnection.

Multiport II is suitable for use with a wide range of radiation detectors. Selecting a proper preamplifier, amplifier and high voltage power supply, makes Multiport II compatible with NaI(Tl), HPGe, SiLi, CdTe, ion implanted, plastic scintillation, BGO and other detector technologies. Modular NIM packaging makes it easy to reconfigure systems as needs change or as new technologies become available.

The use of parallel processing technique results in an effective zero time to “add one” in memory, resulting in a fast conversion time. Furthermore, the on-board implementation of the sliding scale method improves the linearity and the channel uniformity. To protect long collections from power failure, the Multiport II features on-board data and settings retention at fixed time intervals for each of its MCAs.

Multiport II provides full I/O support, including Canberra standard PUR/LTC, sample changer synchronization and advanced PHA operations.

For more flexibility and more applications, Multiport II supports both Pulse Height Analysis (PHA) and Multichannel Scaling (MCS) modes of operation. In MCA mode, a single channel analyzer (SCA) is also available as well as input/output that allows acquisition to be synchronized by external modules.
Multiport II Multichannel Analyzer

SCA output works in both modes, PHA and MCS. In MCS mode, SCA pulses may also be selected as input pulses. The maximum input rate is 10 MHz in TTL input mode.

Software Support
The Multiport II is fully supported by Genie 2000 software family suite. Multiport II is fully remote controlled under Genie 2000 (parameters such as gain, LLD, ULD, ADC zero and MCS parameters) via standard Genie 2000 tools. Genie 2000 supports a wide range of time proven spectral analysis algorithms, modern spectrum display and user interface as well as a variety of special applications programs. Genie 2000 software solutions are available for applications ranging as widely as laboratory gamma and alpha spectroscopy, waste measurement, whole body counting and nuclear safeguards.

Specifications
ADC INPUT
- ADC IN – Accepts positive unipolar or bipolar, positive lobe leading, pulses for PHA and MCS (Internal Pulse Source); amplitude 0 to +10 V or 0 to +5 V, switch selectable; rise time >0.25 μs; width >0.5 μs; Z_n = 1.33 kΩ (10 V range) or 2 kΩ (5 V range); direct coupled; front and rear panel BNCs, one pair per MCA.

LOGIC INPUTS
Rear panel mini-D I/O connectors for logic input and output signals, one per MCA.
- XINPUT – External start/stop and sample changer ready input; active high, active low setting; 10 kΩ pull-up to 5 V; TTL pulse; pin 1 of the I/O connector.
- XSUSPEND – Suspends pulse processing and preset counters; fixed active low; 10 kΩ pull-up to +5 V; TTL pulse; pin 3 of the I/O connector.
- XDT – PUR dead time input; active high, low setting; forced to inactive state by 1 kΩ pull-up to +5 V or pull-down to GND when no signal is present; TTL pulse; pin 5 of the I/O connector.
- XMCSRESTART – MCS sweep advance input; active high, active low setting; edge triggered; 10 kΩ pull-up to +5 V; TTL pulse; pin 10 of the I/O connector.
- XMCSADVANCE – External channel advance input; active high, active low setting; edge triggered; duration ≥10 ns; max. rate 1 MHz; 10 kΩ pull-up to +5 V; positive TTL pulse; pin 11 of the I/O connector.
- XMCRS – MCRS input; active high, active low setting; edge triggered; duration ≥10 ns; rate ≤10 MHz; 10 kΩ pull-up to +5 V; positive TTL pulse; pin 12 of the I/O connector.
- XCOINC – Coincidence/Anticoincidence input; active high, active low setting; edge triggered, level sensitive selection; forced to inactive state by 1 kΩ pull-up to +5 V or pull-down to GND when no signal is present; TTL pulse; pin 13 of the I/O connector.
- XREJ – Pileup reject input; must occur during the ADC linear gate (LG) time active high, active low setting; forced to inactive state by 1 kΩ pull-up to +5 V or pull-down to GND when no signal is present; positive TTL pulse; pin 14 of the I/O connector.

LOGIC OUTPUTS
Rear panel mini-D I/O connectors for logic input and output signals, one per MCA.
- XOUTPUT – Advance sample changer output; active high, active low setting; 150 ms TTL pulse; pin 2 of the I/O connector.
- XSCA – Single channel analyzer output; ≈250 ns TTL pulse generated for input pulses detected between LLD and ULD; active high; pin 4 of the I/O connector.
- XLG – PUR linear gate output; active when ADC acquires an input pulse; active high, active low setting; TTL pulse; pin 6 of the I/O connector.
- XCOLLECTSTATUS – External acquire status; active high, active low setting; TTL pulse; pin 9 of the I/O connector.
- +5 V – Power output for external circuitry; 100 mA max. per connector; pin 7 of the I/O connector.

INTERNAL CONTROLS
- ADC INPUT RANGE – Sets the ADC input range to 0–10 V (default) or 0–5 V; slide switch on the MCA board.
- POWER SUPPLY VOLTAGE – Selects either ±12 V (default) or ±6 V; slide switch on the main board.

SOFTWARE CONTROLS
- ADC LLD – 0 to 100% of full scale (4096 steps).
- ADC ULD – 0 to 110% of full scale (4096 steps).
- ADC ZERO – ±2.5% of full scale (4096 steps).
- ADC CONVERSION GAIN – 256, 512, 1024, 2048, 4096, 8192, 16 384.
- REAL TIME PRESET – Maximum of ≈49.71 days.
- LIVE TIME PRESET – Maximum of ≈49.71 days.

INDICATORS
- MCA #n – ON when MCA board in slot #n is installed and power in ON; front panel green LED.
- ACQUIRE – ON when the corresponding MCA is acquiring; front panel green LED.
- RATE – Flashes for every input pulse processed in the corresponding MCA; front panel yellow LED.
- COMM – ON when unit is ready for USB and/or Ethernet communication; flashes brighter when data transfer occurs; front panel yellow LED.

COMMUNICATION
- USB – Standard USB port; rear panel USB type-B connector.
- ETHERNET – Optional Ethernet port; rear panel RJ-45 connector.

PERFORMANCE
- INTEGRAL NONLINEARITY – <±0.025% of full scale over the top 99.5% of selected range.
- DIFFERENTIAL NONLINEARITY – <±0.9% of full scale over the top 99.5% of range including effects from differential nonlinearity.
- GAIN DRIFT – <±0.005% of full scale/°C.
- ZERO DRIFT – <±0.005% of full scale/°C.
Multiport II Multichannel Analyzer

- **LONG TERM DRIFT** – <±0.005% of full scale/24 h at a constant temperature.
- **PEAK SHIFT** – <±0.025% of full scale at rates up to 100 kHz.
- **ADC DEAD TIME** – Linear gate time +1.2 µs.
- **CHANNEL PROFILE** – Typically flat over 90% of channel width.

MCS –
- **INPUT RATE** – Up to 10 MHz.
- **DWELL TIME** – Software selectable from 1 µs to 71 min, with varying resolution in increments of 1 µs.
- **SWEEP SELECTION** – Software selectable preset sweeps from 1 to $2^{32} - 1$.
- **DEAD TIME** – Between channels: 0. Between sweeps: 0 for internal sweep restart, 0–40 ns for external sweep restart.
- **NUMBER OF CHANNELS** – 16 384.
- **COUNTS/CHANNEL** – $2^{32} - 1$.

POWER
Depends on the setting of the internal control for Power Supply Voltage (±12 V or ±6 V):
- **±12 V Power Supply** –
 - One MCA board:
 - +12 V dc – 250 mA
 - –12 V dc – 50 mA
 - Each additional MCA board:
 - +12 V dc – 90 mA
 - –12 V dc – 50 mA
- **±6 V Power Supply** –
 - One MCA board:
 - +6 V dc – 475 mA
 - –6 V dc – 50 mA
 - Each additional MCA board:
 - +6 V dc – 150 mA
 - –6 V dc – 50 mA

PHYSICAL
- **SIZE** – Standard double width NIM module 6.86 x 22.12 cm (2.70 x 8.71 in.) per DOE/ER-0457T.
- **NET WEIGHT** – 1.36 kg (3.0 lb) with one MCA/ADC board.

ENVIRONMENTAL
- **OPERATING TEMPERATURE** – 0–45 °C.
- **OPERATING HUMIDITY** – 0–80% relative, non-condensing. Meets the environmental conditions specified by EN 61010, Installation Category I, Pollution Degree 2.

SYSTEM REQUIREMENTS
- A PC-based system with a USB port. Ethernet version also requires Ethernet connection.
- Model S500 Genie 2000 Basic Spectroscopy Software, V2.1a or later.

Ordering Information
- **MP2-nU** – Multiport II USB module with n inputs, where n is 1 to 6; not field upgradable to the Ethernet module; includes one 3 m shielded USB cable.
- **MP2-nE** – Multiport II Ethernet/USB module with n inputs, where n is 1 to 6; includes one 3 m shielded USB cable.
- **MPT2-MCA** – One additional Multiport II MCA/ADC board.
- **C1801** – Multiport II PUR/LTC Cable (included with each MCA/ADC board).
- **C1802** – Multiport II PUR/LTC Start/Stop and Sample Changer Cable.
- **C1804** – Multiport II PUR/LTC and MCS Start/Stop Cable.

X-PIPS, Genie and PIPS are trademarks and/or registered trademarks of Mirion Technologies, Inc. and/or its affiliates in the United States and/or other countries.

All other trademarks are the property of their respective owners.

©2017 Mirion Technologies (Canberra), Inc. All rights reserved.

Copyright ©2017 Mirion Technologies, Inc. or its affiliates. All rights reserved. Mirion, the Mirion logo, and other trade names of Mirion products listed herein are registered trademarks or trademarks of Mirion Technologies, Inc. or its affiliates in the United States and other countries. Third party trademarks mentioned are the property of their respective owners.